Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 15(5): e0049624, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534158

RESUMEN

Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce genomic information about the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) from previously described Kyphosus gut metagenomes and newly sequenced bioreactor enrichments reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzyme collections able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) highlight the importance of metabolic contributions from multiple phyla to broaden polysaccharide degradation capabilities. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.IMPORTANCESeaweed has long been considered a promising source of sustainable biomass for bioenergy and aquaculture feed, but scalable industrial methods for decomposing terrestrial compounds can struggle to break down seaweed polysaccharides efficiently due to their unique sulfated structures. Fish of the genus Kyphosus feed on seaweed by leveraging gastrointestinal bacteria to degrade algal polysaccharides into simple sugars. This study reconstructs metagenome-assembled genomes for these gastrointestinal bacteria to enhance our understanding of herbivorous fish digestion and fermentation of algal sugars. Investigations at the gene level identify Kyphosus guts as an untapped source of seaweed-degrading enzymes ripe for further characterization. These discoveries set the stage for future work incorporating marine enzymes and microbial communities in the industrial degradation of algal polysaccharides.


Asunto(s)
Microbioma Gastrointestinal , Polisacáridos , Algas Marinas , Simbiosis , Animales , Polisacáridos/metabolismo , Algas Marinas/microbiología , Consorcios Microbianos , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Metagenoma , Peces/microbiología , Filogenia
2.
Commun Biol ; 7(1): 160, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351328

RESUMEN

Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.


Asunto(s)
Antozoos , Animales , Antozoos/fisiología , Arrecifes de Coral , Calor , Agua
3.
bioRxiv ; 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38076955

RESUMEN

Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce foundational genomic work on the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzymes able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) suggest the potential for microbial transfer between marine sediment and Kyphosus digestive tracts. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.

4.
Appl Environ Microbiol ; 89(5): e0215422, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37133385

RESUMEN

Marine herbivorous fish that feed primarily on macroalgae, such as those from the genus Kyphosus, are essential for maintaining coral health and abundance on tropical reefs. Here, deep metagenomic sequencing and assembly of gut compartment-specific samples from three sympatric, macroalgivorous Hawaiian kyphosid species have been used to connect host gut microbial taxa with predicted protein functional capacities likely to contribute to efficient macroalgal digestion. Bacterial community compositions, algal dietary sources, and predicted enzyme functionalities were analyzed in parallel for 16 metagenomes spanning the mid- and hindgut digestive regions of wild-caught fishes. Gene colocalization patterns of expanded carbohydrate (CAZy) and sulfatase (SulfAtlas) digestive enzyme families on assembled contigs were used to identify likely polysaccharide utilization locus associations and to visualize potential cooperative networks of extracellularly exported proteins targeting complex sulfated polysaccharides. These insights into the gut microbiota of herbivorous marine fish and their functional capabilities improve our understanding of the enzymes and microorganisms involved in digesting complex macroalgal sulfated polysaccharides. IMPORTANCE This work connects specific uncultured bacterial taxa with distinct polysaccharide digestion capabilities lacking in their marine vertebrate hosts, providing fresh insights into poorly understood processes for deconstructing complex sulfated polysaccharides and potential evolutionary mechanisms for microbial acquisition of expanded macroalgal utilization gene functions. Several thousand new marine-specific candidate enzyme sequences for polysaccharide utilization have been identified. These data provide foundational resources for future investigations into suppression of coral reef macroalgal overgrowth, fish host physiology, the use of macroalgal feedstocks in terrestrial and aquaculture animal feeds, and the bioconversion of macroalgae biomass into value-added commercial fuel and chemical products.


Asunto(s)
Microbiota , Algas Marinas , Animales , Polisacáridos , Sulfatos , Arrecifes de Coral , Peces , Bacterias/genética
5.
Proc Natl Acad Sci U S A ; 119(33): e2204146119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35960845

RESUMEN

Microbes are found in nearly every habitat and organism on the planet, where they are critical to host health, fitness, and metabolism. In most organisms, few microbes are inherited at birth; instead, acquiring microbiomes generally involves complicated interactions between the environment, hosts, and symbionts. Despite the criticality of microbiome acquisition, we know little about where hosts' microbes reside when not in or on hosts of interest. Because microbes span a continuum ranging from generalists associating with multiple hosts and habitats to specialists with narrower host ranges, identifying potential sources of microbial diversity that can contribute to the microbiomes of unrelated hosts is a gap in our understanding of microbiome assembly. Microbial dispersal attenuates with distance, so identifying sources and sinks requires data from microbiomes that are contemporary and near enough for potential microbial transmission. Here, we characterize microbiomes across adjacent terrestrial and aquatic hosts and habitats throughout an entire watershed, showing that the most species-poor microbiomes are partial subsets of the most species-rich and that microbiomes of plants and animals are nested within those of their environments. Furthermore, we show that the host and habitat range of a microbe within a single ecosystem predicts its global distribution, a relationship with implications for global microbial assembly processes. Thus, the tendency for microbes to occupy multiple habitats and unrelated hosts enables persistent microbiomes, even when host populations are disjunct. Our whole-watershed census demonstrates how a nested distribution of microbes, following the trophic hierarchies of hosts, can shape microbial acquisition.


Asunto(s)
Ecosistema , Microbiota , Plantas , Animales , Bacterias , Plantas/microbiología
6.
Anim Microbiome ; 4(1): 33, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606844

RESUMEN

BACKGROUND: Gut microorganisms aid in the digestion of food by providing exogenous metabolic pathways to break down organic compounds. An integration of longitudinal microbial and chemical data is necessary to illuminate how gut microorganisms supplement the energetic and nutritional requirements of animals. Although mammalian gut systems are well-studied in this capacity, the role of microbes in the breakdown and utilization of recalcitrant marine macroalgae in herbivorous fish is relatively understudied and an emerging priority for bioproduct extraction. Here we use a comprehensive survey of the marine herbivorous fish gut microbial ecosystem via parallel 16S rRNA gene amplicon profiling (microbiota) and untargeted tandem mass spectrometry (metabolomes) to demonstrate consistent transitions among 8 gut subsections across five fish of the genus of Kyphosus. RESULTS: Integration of microbial phylogenetic and chemical diversity data reveals that microbial communities and metabolomes covaried and differentiated continuously from stomach to hindgut, with the midgut containing multiple distinct and previously uncharacterized microenvironments and a distinct hindgut community dominated by obligate anaerobes. This differentiation was driven primarily by anaerobic gut endosymbionts of the classes Bacteroidia and Clostridia changing in concert with bile acids, small peptides, and phospholipids: bile acid deconjugation associated with early midgut microbiota, small peptide production associated with midgut microbiota, and phospholipid production associated with hindgut microbiota. CONCLUSIONS: The combination of microbial and untargeted metabolomic data at high spatial resolution provides a new view of the diverse fish gut microenvironment and serves as a foundation to understand functional partitioning of microbial activities that contribute to the digestion of complex macroalgae in herbivorous marine fish.

7.
Front Vet Sci ; 8: 742288, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34938792

RESUMEN

The emerging fungal pathogen, Batrachochytrium dendrobatidis (Bd), which can cause a fatal disease called chytridiomycosis, is implicated in the collapse of hundreds of host amphibian species. We describe chytridiomycosis dynamics in two co-occurring terrestrial salamander species, the Santa Lucia Mountains slender salamander, Batrachoseps luciae, and the arboreal salamander, Aneides lugubris. We (1) conduct a retrospective Bd-infection survey of specimens collected over the last century, (2) estimate present-day Bd infections in wild populations, (3) use generalized linear models (GLM) to identify biotic and abiotic correlates of infection risk, (4) investigate susceptibility of hosts exposed to Bd in laboratory trials, and (5) examine the ability of host skin bacteria to inhibit Bd in culture. Our historical survey of 2,866 specimens revealed that for most of the early 20th century (~1920-1969), Bd was not detected in either species. By the 1990s the proportion of infected specimens was 29 and 17% (B. luciae and A. lugubris, respectively), and in the 2010s it was 10 and 17%. This was similar to the number of infected samples from contemporary populations (2014-2015) at 10 and 18%. We found that both hosts experience signs of chytridiomycosis and suffered high Bd-caused mortality (88 and 71% for B. luciae and A. lugubris, respectively). Our GLM revealed that Bd-infection probability was positively correlated with intraspecific group size and proximity to heterospecifics but not to abiotic factors such as precipitation, minimum temperature, maximum temperature, mean temperature, and elevation, or to the size of the hosts. Finally, we found that both host species contain symbiotic skin-bacteria that inhibit growth of Bd in laboratory trials. Our results provide new evidence consistent with other studies showing a relatively recent Bd invasion of amphibian host populations in western North America and suggest that the spread of the pathogen may be enabled both through conspecific and heterospecific host interactions. Our results suggest that wildlife disease studies should assess host-pathogen dynamics that consider the interactions and effects of multiple hosts, as well as the historical context of pathogen invasion, establishment, and epizootic to enzootic transitions to better understand and predict disease dynamics.

8.
Glob Chang Biol ; 27(12): 2728-2743, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33784420

RESUMEN

Ocean warming is causing global coral bleaching events to increase in frequency, resulting in widespread coral mortality and disrupting the function of coral reef ecosystems. However, even during mass bleaching events, many corals resist bleaching despite exposure to abnormally high temperatures. While the physiological effects of bleaching have been well documented, the consequences of heat stress for bleaching-resistant individuals are not well understood. In addition, much remains to be learned about how heat stress affects cellular-level processes that may be overlooked at the organismal level, yet are crucial for coral performance in the short term and ecological success over the long term. Here we compared the physiological and cellular responses of bleaching-resistant and bleaching-susceptible corals throughout the 2019 marine heatwave in Hawai'i, a repeat bleaching event that occurred 4 years after the previous regional event. Relative bleaching susceptibility within species was consistent between the two bleaching events, yet corals of both resistant and susceptible phenotypes exhibited pronounced metabolic depression during the heatwave. At the cellular level, bleaching-susceptible corals had lower intracellular pH than bleaching-resistant corals at the peak of bleaching for both symbiont-hosting and symbiont-free cells, indicating greater disruption of acid-base homeostasis in bleaching-susceptible individuals. Notably, cells from both phenotypes were unable to compensate for experimentally induced cellular acidosis, indicating that acid-base regulation was significantly impaired at the cellular level even in bleaching-resistant corals and in cells containing symbionts. Thermal disturbances may thus have substantial ecological consequences, as even small reallocations in energy budgets to maintain homeostasis during stress can negatively affect fitness. These results suggest concern is warranted for corals coping with ocean acidification alongside ocean warming, as the feedback between temperature stress and acid-base regulation may further exacerbate the physiological effects of climate change.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Ecosistema , Hawaii , Homeostasis , Concentración de Iones de Hidrógeno , Agua de Mar , Simbiosis
9.
Mol Ecol ; 28(1): 127-140, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30506592

RESUMEN

The fungal pathogen Batrachochytrium dendrobatidis (Bd) infects the skin of amphibians and has caused severe declines and extinctions of amphibians globally. In this study, we investigate the interaction between Bd and the bacterial skin microbiome of the endangered Sierra Nevada yellow-legged frog, Rana sierrae, using both culture-dependent and culture-independent methods. Samples were collected from two populations of R. sierrae that likely underwent Bd epizootics in the past, but that continue to persist with Bd in an enzootic disease state, and we address the hypothesis that such "persistent" populations are aided by mutualistic skin microbes. Our 16S rRNA metabarcoding data reveal that the skin microbiome of highly infected juvenile frogs is characterized by significantly reduced species richness and evenness, and by strikingly lower variation between individuals, compared to juveniles and adults with lower infection levels. Over 90% of DNA sequences from the skin microbiome of highly infected frogs were derived from bacteria in a single order, Burkholderiales, compared to just 54% in frogs with lower infection levels. In a culture-dependent Bd inhibition assay, the bacterial metabolites we evaluated all inhibited the growth of Bd. Together, these results illustrate the disruptive effects of Bd infection on host skin microbial community structure and dynamics, and suggest possible avenues for the development of anti-Bd probiotic treatments.


Asunto(s)
Anfibios/microbiología , Bacterias/patogenicidad , Piel/microbiología , Animales , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Variación Genética , Interacciones Huésped-Patógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...